Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Microbiol Spectr ; 12(1): e0239923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38063388

RESUMO

IMPORTANCE: Serology reveals exposure to pathogens, as well as the state of autoimmune and other clinical conditions. It is used to evaluate individuals and their histories and as a public health tool to track epidemics. Employing a variety of formats, studies nearly always perform serology by testing response to only one or a few antigens. However, clinical outcomes of new infections also depend on which previous infections may have occurred. We developed a high-throughput serology method that evaluates responses to hundreds of antigens simultaneously. It can be used to evaluate thousands of samples at a time and provide a quantitative readout. This tool will enable doctors to monitor which pathogens an individual has been exposed to and how that changes in the future. Moreover, public health officials could track populations and look for infectious trends among large populations. Testing many potential antigens at a time may also aid in vaccine development.


Assuntos
Sistema Imunitário , Sorologia , Humanos , Saúde Pública , Sorologia/métodos
2.
EBioMedicine ; 99: 104897, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096687

RESUMO

BACKGROUND: Increasing evidence supports that antibodies can protect against active tuberculosis (TB) but knowledge of potentially protective antigens, especially in the airways, is limited. The main objective of this study was to identify antigen-specific airway and systemic immunoglobulin isotype responses associated with the outcome of controlled latent Mycobacterium tuberculosis (Mtb) infection (LTBI) versus uncontrolled infection (TB) in nonhuman primates. METHODS: In a case-control design, using non-parametric group comparisons with false discovery rate adjustments, we assessed antibodies in 57 cynomolgus macaques which, following low-dose airway Mtb infection, developed either LTBI or TB. We investigated airway and systemic IgG, IgA, and IgM responses in paired bronchoalveolar lavage and plasma samples prior to, two-, and 5-6-months post Mtb infection using an antigen-unbiased approach with Mtb glycan and proteome-wide microarrays. FINDINGS: Macaques that developed LTBI (n = 36) had significantly increased airway and plasma IgA reactivities to specific arabinomannan (AM) motifs prior to Mtb infection compared to those that developed TB (n = 21; p < 0.01, q < 0.05). Furthermore, LTBI macaques had higher plasma IgG reactivity to protein MTB32A (Rv0125) early post Mtb infection (p < 0.05) and increasing airway IgG responses to some proteins over time. INTERPRETATION: Our results support a protective role of pre-existing mucosal (lung) and systemic IgA to specific Mtb glycan motifs, suggesting that prior exposure to nontuberculous mycobacteria could be protective against TB. They further suggest that IgG to Mtb proteins early post infection could provide an additional protective mechanism. These findings could inform TB vaccine development strategies. FUNDING: NIH/NIAID AI117927, AI146329, and AI127173 to JMA.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Animais , Formação de Anticorpos , Antígenos de Bactérias , Imunoglobulina G , Polissacarídeos , Macaca , Primatas , Imunoglobulina A
3.
Microbiol Spectr ; 11(4): e0469022, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37278651

RESUMO

Patients with 2019 coronavirus disease (COVID-19) exhibit a broad spectrum of clinical presentations. A person's antimicrobial antibody profile, as partially shaped by past infection or vaccination, can reflect the immune system health that is critical to control and resolve the infection. We performed an explorative immunoproteomics study using microbial protein arrays displaying 318 full-length antigens from 77 viruses and 3 bacteria. We compared antimicrobial antibody profiles between 135 patients with mild COVID-19 disease and 215 patients with severe disease in 3 independent cohorts from Mexico and Italy. Severe disease patients were older with higher prevalence of comorbidities. We confirmed that severe disease patients elicited a stronger anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) response. We showed that antibodies against HCoV-229E and HcoV-NL63 but not against HcoV-HKU1 and HcoV-OC43 were also higher in those who had severe disease. We revealed that for a set of IgG and IgA antibodies targeting coronaviruses, herpesviruses, and other respiratory viruses, a subgroup of patients with the highest reactivity levels had a greater incidence of severe disease compared to those with mild disease across all three cohorts. On the contrary, fewer antibodies showed consistent greater prevalence in mild disease in all 3 cohorts. IMPORTANCE The clinical presentations of COVID-19 range from asymptomatic to critical illness that may lead to intensive care or even death. The health of the immune system, as partially shaped by past infections or vaccinations, is critical to control and resolve the infection. Using an innovative protein array platform, we surveyed antibodies against hundreds of full-length microbial antigens from 80 different viruses and bacteria in COVID-19 patients from different geographic regions with mild or severe disease. We not only confirmed the association of severe COVID-19 disease with higher reactivity of antibody responses to SARS-CoV-2 but also uncovered known and novel associations with antibody responses against herpesviruses and other respiratory viruses. Our study represents a significant step forward in understanding the factors contributing to COVID-19 disease severity. We also demonstrate the power of comprehensive antimicrobial antibody profiling in deciphering risk factors for severe COVID-19. We anticipate that our approach will have broad applications in infectious diseases.


Assuntos
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano OC43 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Anticorpos Antivirais
4.
Biotechnol Bioeng ; 120(10): 2890-2906, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376851

RESUMO

Eukaryotic cell-free protein synthesis (CFPS) can accelerate expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and difficulties scaling such systems have prevented their widespread adoption in protein research and manufacturing. Here, we provide detailed demonstrations for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in 48 h, complete with native disulfide bonds and N-glycosylation. An optimized version of the technology is commercialized as ALiCE® and advances in scaling of BYL production methodologies now allow scaling of eukaryotic CFPS reactions. We show linear, lossless scale-up of batch mode protein expression from 100 µL microtiter plates to 10 and 100 mL volumes in Erlenmeyer flasks, culminating in preliminary data from a litre-scale reaction in a rocking-type bioreactor. Together, scaling across a 20,000x range is achieved without impacting product yields. Production of multimeric virus-like particles from the BYL cytosolic fraction were then shown, followed by functional expression of multiple classes of complex, difficult-to-express proteins using the native microsomes of the BYL CFPS. Specifically: a dimeric enzyme; a monoclonal antibody; the SARS-CoV-2 receptor-binding domain; a human growth factor; and a G protein-coupled receptor membrane protein. Functional binding and activity are demonstrated, together with in-depth PTM characterization of purified proteins through disulfide bond and N-glycan analysis. Taken together, BYL is a promising end-to-end R&D to manufacturing platform with the potential to significantly reduce the time-to-market for high value proteins and biologics.


Assuntos
Biotecnologia , COVID-19 , Humanos , Biotecnologia/métodos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Biossíntese de Proteínas , Anticorpos Monoclonais/metabolismo , Dissulfetos/metabolismo , Sistema Livre de Células/metabolismo
5.
J Gastroenterol ; 58(2): 112-124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36301365

RESUMO

BACKGROUND: Chronic Helicobacter pylori infection may induce gastric intestinal metaplasia (IM). We compared anti-H. pylori antibody profiles between IM cases and non-atrophic gastritis (NAG) controls. METHODS: We evaluated humoral responses to 1528 H. pylori proteins among a discovery set of 50 IM and 50 NAG using H. pylori protein arrays. Antibodies with ≥ 20% sensitivity at 90% specificity for either group were selected and further validated in an independent set of 100 IM and 100 NAG using odds ratios (OR). A validated multi-signature was evaluated using the area under the receiver operating characteristics curve (AUC) and net reclassification improvement (NRI). RESULTS: Sixty-two immunoglobulin (Ig) G and 11 IgA antibodies were detected in > 10%. Among them, 22 IgG and 6 IgA antibodies were different between IM and NAG in the discovery set. Validated antibodies included 11 IgG (anti-HP1177/Omp27/HopQ [OR = 8.1, p < 0.001], anti-HP0547/CagA [4.6, p < 0.001], anti-HP0596/Tipα [4.0, p = 0.002], anti-HP0103/TlpB [3.8, p = 0.001], anti-HP1125/PalA/Omp18 [3.1, p = 0.001], anti-HP0153/RecA [0.48, p = 0.03], anti-HP0385 [0.41, p = 0.006], anti-HP0243/TlpB [0.39, p = 0.016], anti-HP0371/FabE [0.37, p = 0.017], anti-HP0900/HypB/AccB [0.35, p = 0.048], and anti-HP0709 [0.30, p = 0.003]), and 2 IgA (anti-HP1125/PalA/Omp18 [2.7, p = 0.03] and anti-HP0596/Tipα [2.5, p = 0.027]). A model including all 11 IgG antibodies (AUC = 0.81) had better discriminated IM and NAG compared with an anti-CagA only (AUC = 0.77) model (NRI = 0.44; p = 0.001). CONCLUSIONS: Our study represents the most comprehensive assessment of anti-H. pylori antibody profiles in IM. The target antigens for these novel antibodies may act together with CagA in the progression to IM. Along with other biomarkers, specific H. pylori antibodies may identify IM patients, who would benefit from surveillance.


Assuntos
Gastrite Atrófica , Infecções por Helicobacter , Helicobacter pylori , Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Anticorpos Antibacterianos , Imunoglobulina G , Imunoglobulina A , Metaplasia
6.
Cancer Epidemiol Biomarkers Prev ; 32(4): 496-504, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36066883

RESUMO

BACKGROUND: CT screening can detect lung cancer early but suffers a high false-positive rate. There is a need for molecular biomarkers that can distinguish malignant and benign indeterminate pulmonary nodules (IPN) detected by CT scan. METHODS: We profiled antibodies against 901 individual microbial antigens from 27 bacteria and 29 viruses in sera from 127 lung adenocarcinoma (ADC), 123 smoker controls (SMC), 170 benign nodule controls (BNC) individuals using protein microarrays to identify ADC and BNC specific antimicrobial antibodies. RESULTS: Analyzing fourth quartile ORs, we found more antibodies with higher prevalence in the three BNC subgroups than in ADC or SMC. We demonstrated that significantly more anti-Helicobacter pylori antibodies showed higher prevalence in ADC relative to SMC. We performed subgroup analysis and found that more antibodies with higher prevalence in light smokers (≤20 pack-years) compared with heavy smokers (>20 pack-years), in BNC with nodule size >1 cm than in those with ≤1 cm nodules, and in stage I ADC than in stage II and III ADC. We performed multivariate analysis and constructed antibody panels that can distinguish ADC versus SMC and ADC versus BNC with area under the ROC curve (AUC) of 0.88 and 0.80, respectively. CONCLUSIONS: Antimicrobial antibodies have the potential to reduce the false positive rate of CT screening and provide interesting insight in lung cancer development. IMPACT: Microbial infection plays an important role in lung cancer development and the formation of benign pulmonary nodules.


Assuntos
Adenocarcinoma de Pulmão , Anti-Infecciosos , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Formação de Anticorpos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia
7.
Int Forum Allergy Rhinol ; 13(8): 1503-1510, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36504343

RESUMO

BACKGROUND: The role of microbes in chronic rhinosinusitis (CRS) is poorly understood. We hypothesize that analyzing prior microbial exposures via assessing microbial protein serological reactivity in CRS versus controls may offer insights for CRS etiopathogenesis. METHODS: We profiled IgG and IgA antibodies to individual microbial proteins in serum samples of CRS patients and controls using a novel high-throughput microarray protein technology, Nucleic Acid Programmable Protein Array (NAPPA). The study was conducted on 118 subjects (39 CRS, 79 controls). A CRS-focused NAPPA array, with 1557 potentially sero-reactive microbial proteins elected from a pre-screening of 6500 genes of interest was constructed. It included membrane-associated proteins from 47 bacterial species and all proteins from 43 viral strains. Differences between CRS and controls were compared across individual antimicrobial antibodies and the species. RESULTS: Chronic rhinosinusitis patients had significantly elevated antimicrobial antibodies compared with controls. One bacterium (Staphylococcus aureus) and three viral strains (human metapneumovirus, human herpesvirus 5, and human herpesvirus 4) were identified as sources of the proteins that showed significantly elevated sero-reactivity in CRS patients. Within CRS, patients with polyps had elevated antibodies against S. aureus, influenza A virus (H1N1, H3N2), and rhinovirus B14. CRS patients without polyps showed more antibodies against human herpesvirus 1 and vaccinia virus WR. CONCLUSIONS: Compared with healthy controls, CRS patients' serum samples showed significantly increased sero-reactivity to both bacterial and viral proteins, reflecting recent or current infection or active colonization. Significantly higher antibodies against S. aureus, human metapneumovirus, human herpesvirus 5, and human herpesvirus 4 in CRS need further study.


Assuntos
Anti-Infecciosos , Vírus da Influenza A Subtipo H1N1 , Microbiota , Rinite , Sinusite , Humanos , Staphylococcus aureus , Formação de Anticorpos , Vírus da Influenza A Subtipo H3N2 , Doença Crônica
8.
bioRxiv ; 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36380753

RESUMO

Eukaryotic cell-free protein synthesis (CFPS) systems have the potential to simplify and speed up the expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and the inability to scale such systems have so far prevented their widespread adoption in protein research and manufacturing. Here, we present a detailed demonstration for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in under 48 hours, complete with native disulfide bonds and N-glycosylation. An optimised version of the technology is commercialised as 'ALiCE ® ', engineered for high yields of up to 3 mg/mL. Recent advances in the scaling of BYL production methodologies have allowed scaling of the CFPS reaction. We show simple, linear scale-up of batch mode reporter proten expression from a 100 µL microtiter plate format to 10 mL and 100 mL volumes in standard Erlenmeyer flasks, culminating in preliminary data from 1 L reactions in a CELL-tainer® CT20 rocking motion bioreactor. As such, these works represent the first published example of a eukaryotic CFPS reaction scaled past the 10 mL level by several orders of magnitude. We show the ability of BYL to produce the simple reporter protein eYFP and large, multimeric virus-like particles directly in the cytosolic fraction. Complex proteins are processed using the native microsomes of BYL and functional expression of multiple classes of complex, difficult-to-express proteins is demonstrated, specifically: a dimeric, glycoprotein enzyme, glucose oxidase; the monoclonal antibody adalimumab; the SARS-Cov-2 receptor-binding domain; human epidermal growth factor; and a G protein-coupled receptor membrane protein, cannabinoid receptor type 2. Functional binding and activity are shown using a combination of surface plasmon resonance techniques, a serology-based ELISA method and a G protein activation assay. Finally, in-depth post-translational modification (PTM) characterisation of purified proteins through disulfide bond and N-glycan analysis is also revealed - previously difficult in the eukaryotic CFPS space due to limitations in reaction volumes and yields. Taken together, BYL provides a real opportunity for screening of complex proteins at the microscale with subsequent amplification to manufacturing-ready levels using off-the-shelf protocols. This end-to-end platform suggests the potential to significantly reduce cost and the time-to-market for high value proteins and biologics.

9.
World J Gastroenterol ; 28(30): 4089-4101, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36157118

RESUMO

BACKGROUND: The healthcare burden of inflammatory bowel disease (IBD) is rising globally and there are limited non-invasive biomarkers for accurate and early diagnosis. AIM: To understand the important role that intestinal microbiota play in IBD pathogenesis and identify anti-microbial antibody signatures that benefit clinical management of IBD patients. METHODS: We performed serological profiling of 100 Crohn's disease (CD) patients, 100 ulcerative colitis (UC) patients and 100 healthy controls against 1173 bacterial and 397 viral proteins from 50 bacteria and 33 viruses on protein microarrays. The study subjects were randomly divided into discovery (n = 150) and validation (n = 150) sets. Statistical analysis was performed using R packages. RESULTS: Anti-bacterial antibody responses showed greater differential prevalence among the three subject groups than anti-viral antibody responses. We identified novel antibodies against the antigens of Bacteroidetes vulgatus (BVU_0562) and Streptococcus pneumoniae (SP_1992) showing higher prevalence in CD patients relative to healthy controls. We also identified antibodies against the antigen of Streptococcus pyogenes (SPy_2009) showing higher prevalence in healthy controls relative to UC patients. Using these novel antibodies, we built biomarker panels with area under the curve (AUC) of 0.81, 0.87, and 0.82 distinguishing CD vs control, UC vs control, and CD vs UC, respectively. Subgroup analysis revealed that penetrating CD behavior, colonic CD location, CD patients with a history of surgery, and extensive UC exhibited highest antibody prevalence among all patients. We demonstrated that autoantibodies and anti-microbial antibodies in CD patients had minimal correlation. CONCLUSION: We have identified antibody signatures for CD and UC using a comprehensive analysis of anti-microbial antibody response in IBD. These antibodies and the source microorganisms of their target antigens improve our understanding of the role of specific microorganisms in IBD pathogenesis and, after future validation, should aid early and accurate diagnosis of IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Autoanticorpos , Biomarcadores , Humanos , Proteínas Virais
10.
mSphere ; 7(4): e0019322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35703544

RESUMO

In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies" (https://www.cancer.gov/research/key-initiatives/covid-19/coronavirus-research-initiatives/serological-sciences-network). SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology standard reference material and first WHO international standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. SeroNet institutions reported development of a total of 27 enzyme-linked immunosorbent assay (ELISA) methods, 13 multiplex assays, and 9 neutralization assays and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. In conclusion, SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons. IMPORTANCE SeroNet institutions have developed or implemented 61 diverse COVID-19 serological assays and are collaboratively working to harmonize these assays using reference materials to establish standardized reporting units. This will facilitate clinical interpretation of serology results and cross-comparison of research data.


Assuntos
COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , SARS-CoV-2 , Testes Sorológicos/métodos
11.
medRxiv ; 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35262095

RESUMO

Background: In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies." SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. Methods: To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. SARS-CoV-2 serology standard reference material and First WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. Results: SeroNet institutions reported development of a total of 27 ELISA methods, 13 multiplex assays, 9 neutralization assays, and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. Conclusions: SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 virus and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons.

12.
Methods Mol Biol ; 2344: 47-64, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34115351

RESUMO

A novel protein microarray technology, called high-density nucleic acid programmable protein array (HD-NAPPA), enables the serological screening of thousands of proteins at one time. HD-NAPPA extends the capabilities of NAPPA, which produces protein microarrays on a conventional glass microscope slide. By comparison, HD-NAPPA displays proteins in over 10,000 nanowells etched in a silicon slide. Proteins on HD-NAPPA are expressed in the individual isolated nanowells, via in vitro transcription and translation (IVTT), without any diffusion during incubation. Here we describe the method for antibody biomarker identification using HD-NAPPA, including four main steps: (1) HD-NAPPA array protein expression, (2) primary antibodies (serum/plasma) probing, (3) secondary antibody visualization, and (4) image scanning and data processing.


Assuntos
Anticorpos/química , Análise Serial de Proteínas , Biomarcadores/análise , Humanos
13.
Gastric Cancer ; 24(4): 858-867, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33661412

RESUMO

BACKGROUND: Around 10% of gastric carcinomas (GC) contain Epstein-Barr virus (EBV) DNA. We characterized the GC-specific antibody response to this common infection, which may provide a noninvasive method to detect EBV-positive GC and elucidate its contribution to carcinogenesis. METHODS: Plasma samples from EBV-positive (n = 28) and EBV-negative (n = 34) Latvian GC patients were immune-profiled against 85 EBV proteins on a multi-microbial Nucleic Acid Programmable Protein Array (EBV-NAPPA). Antibody responses were normalized for each sample as ratios to the median signal intensity (MNI) across all antigens, with seropositivity defined as MNI ≥ 2. Antibodies with ≥ 20% sensitivity at 95% specificity for tumor EBV status were verified by enzyme-linked immunosorbent assay (ELISA) and validated in independent samples from Korea and Poland (n = 24 EBV-positive, n = 65 EBV-negative). RESULTS: Forty anti-EBV IgG and eight IgA antibodies were detected by EBV-NAPPA in ≥ 10% of EBV-positive or EBV-negative GC patients, of which nine IgG antibodies were discriminative for tumor EBV status. Eight of these nine were verified and seven were validated by ELISA: anti-LF2 (odds ratio = 110.0), anti-BORF2 (54.2), anti-BALF2 (44.1), anti-BaRF1 (26.7), anti-BXLF1 (12.8), anti-BRLF1 (8.3), and anti-BLLF3 (5.4). The top three had areas under receiver operating characteristics curves of 0.81-0.85 for distinguishing tumor EBV status. CONCLUSIONS: The EBV-associated GC-specific humoral response was exclusively directed against lytic cycle immediate-early and early antigens, unlike other EBV-associated malignancies such as nasopharyngeal carcinoma and lymphoma where humoral response is primarily directed against late lytic antigens. Specific anti-EBV antibodies could have utility for clinical diagnosis, epidemiologic studies, and immune-based precision treatment of EBV-positive GC.


Assuntos
Anticorpos Antivirais/sangue , DNA Viral/sangue , Infecções por Vírus Epstein-Barr/sangue , Herpesvirus Humano 4/imunologia , Neoplasias Gástricas/virologia , Idoso , Anticorpos Antivirais/imunologia , DNA Viral/imunologia , Ensaio de Imunoadsorção Enzimática , Infecções por Vírus Epstein-Barr/complicações , Feminino , Humanos , Imunidade Humoral/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Letônia , Masculino , Pessoa de Meia-Idade , Curva ROC , Neoplasias Gástricas/imunologia
14.
J Proteome Res ; 20(1): 409-419, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33108201

RESUMO

Chronic Helicobacter pylori infection is the major risk factor for gastric cancer (GC). However, only some infected individuals develop this neoplasia. Previous H. pylori serology studies have been limited by investigating small numbers of candidate antigens. Therefore, we evaluated humoral responses to a nearly complete H. pylori immunoproteome (1527 proteins) among 50 GC cases and 50 controls using Nucleic Acid Programmable Protein Array (NAPPA). Seropositivity was defined as median normalized intensity ≥2 on NAPPA, and 53 anti-H. pylori antibodies had >10% seroprevalence. Anti-GroEL exhibited the greatest seroprevalence (77% overall), which agreed well with ELISA using whole-cell lysates of H. pylori cells. After an initial screen by H. pylori-NAPPA, we discovered and verified that 12 antibodies by ELISA in controls had ≥15% of samples with an optical reading value exceeding the 95th percentile of the GC group. ELISA-verified antibodies were validated blindly in an independent set of 100 case-control pairs. As expected, anti-CagA seropositivity was positively associated with GC (odds ratio, OR = 5.5; p < 0.05). After validation, six anti-H. pylori antibodies showed lower seropositivity in GC, with ORs ranging from 0.44 to 0.12 (p < 0.05): anti-HP1118/Ggt, anti-HP0516/HsIU, anti-HP0243/NapA, anti-HP1293/RpoA, anti-HP0371/FabE, and anti-HP0875/KatA. Among all combinations, a model with anti-Ggt, anti-HslU, anti-NapA, and anti-CagA had an area under the curve of 0.73 for discriminating GC vs. controls. This study represents the first comprehensive assessment of anti-H. pylori humoral profiles in GC. Decreased responses to multiple proteins in GC may reflect mucosal damage and decreased bacterial burden. The higher prevalence of specific anti-H. pylori antibodies in controls may suggest immune protection against GC development.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Anticorpos Antibacterianos , Antígenos de Bactérias , Proteínas de Bactérias , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/epidemiologia , Humanos , Estudos Soroepidemiológicos
15.
Artigo em Inglês | MEDLINE | ID: mdl-31245298

RESUMO

The identification of microbial biomarkers is critical for the diagnosis of a disease early during infection. However, the identification of reliable biomarkers is often hampered by a low concentration of microbes or biomarkers within host fluids or tissues. We have outlined a multi-platform strategy to assess microbial biomarkers that can be consistently detected in host samples, using Borrelia burgdorferi, the causative agent of Lyme disease, as an example. Key aspects of the strategy include the selection of a macaque model of human disease, in vivo Microbial Antigen Discovery (InMAD), and proteomic methods that include microbial biomarker enrichment within samples to identify secreted proteins circulating during infection. Using the described strategy, we have identified 6 biomarkers from multiple samples. In addition, the temporal antibody response to select bacterial antigens was mapped. By integrating biomarkers identified from early infection with temporal patterns of expression, the described platform allows for the data driven selection of diagnostic targets.


Assuntos
Biomarcadores , Borrelia burgdorferi/isolamento & purificação , Doença de Lyme/diagnóstico , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Técnicas Bacteriológicas , Biomarcadores/sangue , Biomarcadores/urina , Borrelia burgdorferi/imunologia , Diagnóstico Precoce , Humanos , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Macaca mulatta , Proteômica , Soro/química , Urina/química
16.
ACS Synth Biol ; 7(3): 842-852, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29429329

RESUMO

Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than DNA sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones, which are bound to DNA in eukaryotic nuclei and regulate gene expression states. We have previously reported the development and validation of the "polycomb-based transcription factor" (PcTF), a fusion protein that recognizes histone modifications through a protein-protein interaction between its polycomb chromodomain (PCD) motif and trimethylated lysine 27 of histone H3 (H3K27me3) at genomic sites. We demonstrated that PcTF activates genes at methyl-histone-enriched loci in cancer-derived cell lines. However, PcTF induces modest activation of a methyl-histone associated reporter compared to a DNA-binding activator. Therefore, we modified PcTF to enhance its binding avidity. Here, we demonstrate the activity of a modified regulator called Pc2TF, which has two tandem copies of the H3K27me3-binding PCD at the N-terminus. Pc2TF has a smaller apparent dissociation constant value in vitro and shows enhanced gene activation in HEK293 cells compared to PcTF. These results provide compelling evidence that the intrinsic histone-binding activity of the PCD motif can be used to tune the activity of synthetic histone-binding transcriptional regulators.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , Ligantes , Lisina/metabolismo , Metilação , Modelos Moleculares , Proteínas do Grupo Polycomb/metabolismo , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/metabolismo , Transcrição Gênica
17.
Theranostics ; 7(16): 4057-4070, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109798

RESUMO

Rationale: Cell-free protein microarrays display naturally-folded proteins based on just-in-time in situ synthesis, and have made important contributions to basic and translational research. However, the risk of spot-to-spot cross-talk from protein diffusion during expression has limited the feature density of these arrays. Methods: In this work, we developed the Multiplexed Nucleic Acid Programmable Protein Array (M-NAPPA), which significantly increases the number of displayed proteins by multiplexing as many as five different gene plasmids within a printed spot. Results: Even when proteins of different sizes were displayed within the same feature, they were readily detected using protein-specific antibodies. Protein-protein interactions and serological antibody assays using human viral proteome microarrays demonstrated that comparable hits were detected by M-NAPPA and non-multiplexed NAPPA arrays. An ultra-high density proteome microarray displaying > 16k proteins on a single microscope slide was produced by combining M-NAPPA with a photolithography-based silicon nano-well platform. Finally, four new tuberculosis-related antigens in guinea pigs vaccinated with Bacillus Calmette-Guerin (BCG) were identified with M-NAPPA and validated with ELISA. Conclusion: All data demonstrate that multiplexing features on a protein microarray offer a cost-effective fabrication approach and have the potential to facilitate high throughput translational research.


Assuntos
Biomarcadores/metabolismo , Análise Serial de Proteínas/métodos , Animais , Cobaias , Humanos , Ligação Proteica , Proteômica/métodos
18.
Mol Cell Proteomics ; 16(4 suppl 1): S277-S289, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28223349

RESUMO

Better and more diverse biomarkers for the development of simple point-of-care tests for active tuberculosis (TB), a clinically heterogeneous disease, are urgently needed. We generated a proteomic Mycobacterium tuberculosis (Mtb) High-Density Nucleic Acid Programmable Protein Array (HD-NAPPA) that used a novel multiplexed strategy for expedited high-throughput screening for antibody responses to the Mtb proteome. We screened sera from HIV uninfected and coinfected TB patients and controls (n = 120) from the US and South Africa (SA) using the multiplex HD-NAPPA for discovery, followed by deconvolution and validation through single protein HD-NAPPA with biologically independent samples (n = 124). We verified the top proteins with enzyme-linked immunosorbent assays (ELISA) using the original screening and validation samples (n = 244) and heretofore untested samples (n = 41). We identified 8 proteins with TB biomarker value; four (Rv0054, Rv0831c, Rv2031c and Rv0222) of these were previously identified in serology studies, and four (Rv0948c, Rv2853, Rv3405c, Rv3544c) were not known to elicit antibody responses. Using ELISA data, we created classifiers that could discriminate patients' TB status according to geography (US or SA) and HIV (HIV- or HIV+) status. With ROC curve analysis under cross validation, the classifiers performed with an AUC for US/HIV- at 0.807; US/HIV+ at 0.782; SA/HIV- at 0.868; and SA/HIV+ at 0.723. With this study we demonstrate a new platform for biomarker/antibody screening and delineate its utility to identify previously unknown immunoreactive proteins.


Assuntos
Proteínas de Bactérias/imunologia , Infecções por HIV/sangue , Mycobacterium tuberculosis/metabolismo , Análise Serial de Proteínas/métodos , Proteômica/métodos , Ensaios de Anticorpos Bactericidas Séricos/métodos , Tuberculose/imunologia , Adulto , Idoso , Biomarcadores/sangue , Coinfecção , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Curva ROC , África do Sul , Estados Unidos , Adulto Jovem
19.
PLoS One ; 10(8): e0136507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26295457

RESUMO

The membrane proximal region (MPR, residues 649-683) and transmembrane domain (TMD, residues 684-705) of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM). Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.


Assuntos
Vacinas contra a AIDS/química , Proteína gp41 do Envelope de HIV/química , HIV-1/imunologia , Fragmentos de Peptídeos/química , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/isolamento & purificação , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Fragmentos de Peptídeos/imunologia , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/imunologia , Ressonância de Plasmônio de Superfície , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/isolamento & purificação
20.
Biosens Bioelectron ; 66: 338-44, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25437373

RESUMO

Accurate measurement of inter-peptide interactions is beneficial for in-depth understanding disease-related protein folding and peptide aggregation, and further for designing and selecting potential peptide drugs to the target antigen. Herein, we demonstrate a 3D polyrotaxane (PRX) surface for detecting peptides interactions by surface plasmon resonance imaging (SPRi). This surface is supramolecular self-assembly monolayer (SAM) structure fabricated by threading α-cyclodextrans (α-CD) through a linear polyethylene glycol (PEG) chain fixed on gold chip surface to form pseudopolyrotaxane, and further capping the pseudopolyrotaxane with bulky terminated group to form PRX film. The hydroxyl groups of α-CD can provide more active sites to increase molecules immobilization density, and PEG chain has unique protein non-fouling feature. We chose Alzheimer's disease marker ß-amyloid 40 (Aß40) as model peptide, and detected the interaction between it and its inhibitors KLVFFK6 by SPRi. As a striking result, the specific adsorption of KLVFFK6 solution at the concentration of 352µM on Aß40-PRX was 700RU, whereas PEG SAM surface gave no significant binding. Interaction between other lower molecular weight peptides was detected via PRX surface, and the relatively weak interactions (KD=1.73×10(-4)M) between LPFFD (Mw=0.6kDa) and amylin20-29 (Mw=1.0kDa) are successfully detected.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Ciclodextrinas/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Poloxâmero/química , Rotaxanos/química , Ressonância de Plasmônio de Superfície/instrumentação , Sequência de Aminoácidos , Peptídeos beta-Amiloides/análise , Desenho de Equipamento , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Peptídeos/análise , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...